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This paper outlines the development and application of a solution-adaptive
local grid refinement procedure for numerical fluid dynamic calculations in
complex domains involving body-fitted unstructured meshes. A new space
discretization practice and an error estimation technique were developed to
facilitate adaptive space discretization (h-refinement) using cells of arbitrary
topology. The methodology enables implicit, consistent, and uniform treat-
ment throughout the entire computational domain including the interface
between refined regions and the rest of the computational mesh. It is demon-
strated on a number of test cases involving both laminar and turbulent flows,
in which initially regular hexahedral meshes are refined by cell subdivision.
Encouraging results are obtained. Q 1997 Academic Press
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1. INTRODUCTION

For a long time the search for solutions free from numerical error has been and
will be the ultimate goal of CFD research. An indisputable way to reduce the
numerical error is by reducing the size of the discretization elements, so-called
‘‘h-refinement.’’ For efficient and flexible grid generation and error-controlled local
grid refinement, it is a significant advantage to be able to utilize discretization
elements of arbitrary topology. This is particularly obvious in CFD simulations in
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complex geometrical configurations, where accurate description of boundaries is
desired and local grid refinement is to be carried out only in the regions where it
is necessary, without disturbing the rest of the computational mesh.

The information about the regions where the grid should be refined/coarsened
ideally should be provided by an error estimator. Error estimation for fluid flow
calculations is not an easy task. The Navier–Stokes equations, together with the
transport equations for turbulence modeling quantities, are a coupled, nonlinear
system, and errors present in any one of these fields in general will affect the
solution of all others, in a nonlinear manner difficult to describe accurately.

The discretization error describes the deviation from the analytical solution of
the set of differential equations, but it is not directly accessible. However, it is
possible to construct approximations to this error. There are a number of adaptive
methods in computational fluid mechanics which are designed to be used in combina-
tion with finite-element and finite-difference schemes [1–3]. Adaptive finite volume
(FV) discretization and error estimation techniques presented in the literature are
less numerous. Error estimation for the FV method was originally examined in
conjunction with turbulence modeling [4]. The use of upwind differencing introduces
excessive amounts of numerical diffusion which interferes with the turbulent diffu-
sion introduced by the turbulence model. The numerical diffusion is estimated by
comparing the convection flux estimations based on upwind and central differencing
[4, 5]. In a later work by Tattersall and McGuirk [6], the numerical diffusion estimate
has been coupled with an adaptive node-movement technique.

The cell-to-cell imbalances in angular momentum and kinetic energy are
proposed by Haworth et al. [7] to characterize the local solution error. This
method has been tested on a transient flow problem in an internal combustion
engine. The method is not capable of estimating the absolute error levels or
the error present in the transport of scalar quantites (e.g., thermal energy or
turbulence kinetic energy).

Richardson extrapolation is the most popular error estimation method in FV
calculations. It has been used extensively on a variety of situations, ranging from
supersonic flows [8] to incompressible problems [9, 10]. Richardson extrapolation
is quite reliable on fine grids, since it takes into account not only the smoothness
of the spatial variation of the dependent variables but also the nonlinearities and
interequation couplings. The method naturally couples with the use of multigrid
acceleration techniques, where solutions on grids with different cell size are already
available. However, in order to obtain an error estimate using Richardson extrapola-
tion, it is necessary to obtain solutions on at least two grids of spacing differing by
a factor (typically two). A uniformly refined three-dimensional hexahedral grid has
eight times more control volumes (CVs) than a coarse one. For problems where
the geometry and/or the physics to be modeled are complex, the coarsest mesh on
which one can perform sensible calculations already has a very large number of CVs
and a uniform refinement throughout the computational domain, just to estimate the
error, often cannot be afforded.

In the framework of h-refinement for FV methods, several different ways of
mesh refinement have been suggested, with different implications with respect to
the speed, stability, accuracy, and complexity of the flow solver. A computational
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grid made of a sequence of overlapping patches of increased fineness is used by
Caruso [11]. Each of the overlapping patches is an orthogonal and structured grid.
In the flow solver, each ‘‘patch’’ is treated independently, with the information
transfer between the different parts of the mesh performed through the ‘‘patch’’
boundary conditions. A sensitive point of the method is the transfer of information
between the overlapping grids via internal boundary conditions. This is done explic-
itly, resulting in weaker coupling and slower convergence. Also, resolution problems
have been reported at places where flow features intersect with ‘‘patch’’ boundaries
[8]. A clustering algorithm is used by Berger and Oliger [12] to optimize the
construction of patches, their position, and mesh size. It uses concepts from pattern
recognition and artificial intelligence theory. Thompson and Ferziger [10] used the
same algorithm in the simulation of viscous flows. Tu and Fuchs [13] investigated
composite or Chimera grids and multigrid methods in calculation of unsteady flows
in IC engines. Perng and Street [14] introduced a new method to obtain multiple
domain solutions for incompressible flows, which updates the velocity field indepen-
dently on each subgrid and solves the pressure field globally by sweeping through
the subgrids. This procedure reduces the cost of computation significantly compared
with conventional methods which iterate both the momentum and the pressure
equations through subdomains. The new method also required that the grid points
from different subgrids in the overlapping zone be coincident.

A refinement procedure in which the refinement patches are embedded into the
original mesh, thus removing the interpolation problems, is suggested by Chen et al.
[15]. The resulting mesh is then treated in a multiblock manner. Although this
approach presents a considerable improvement over earlier work, it is not appro-
priate for situations requiring large number of embedded refinement levels, as the
number of blocks becomes so large that it significantly impairs the performance of
the code, as reported in [15]. Clustering of grid points is also necessary in order to
obtain a grid made of a number of structured blocks.

Tetrahedral grids offer geometrical flexibility and allow simple and highly local-
ized refinement. Although very good results are produced in inviscid calculations,
the extension of the method to viscous and turbulent flows has been somewhat less
successful. Vilsmeier and Hänel [16] have developed an adaptive FV algorithm on
tetrahedral meshes for Euler and Navier–Stokes equations using h-refinement on
a cell-by-cell basis. Virtual stretching of triangular elements has been introduced
to provide the capability of mesh alignment. It is performed in the vicinity of walls
and in regions of high shear. Unfortunately, this results in high distortion of the
mesh, decreasing the accuracy of the method.

In this paper we present a novel FV discretization practice that does not rely on
any specific cell topology, together with a local error estimation technique that is
very natural for FV discretization, is simple to implement, and is based on a Taylor
series expansion analysis on a given grid. We also present a solution procedure
for the discretized equations which is a variant of the well-known pressure-based
SIMPLE algorithm [17], originally developed for incompressible flows but later
extended to allow for compressibility [18]. The present applications are to incom-
pressible cases.
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FIG. 1. A general polyhedral control volume and the notation used.

The next section describes the space and equation discretization adopted by
the authors. The local error estimation method and refinement practices are then
described in Section 3. Section 4 presents several application examples.

2. DISCRETIZATION PROCEDURE

The integral forms of the time-averaged conservation laws for mass, linear mo-
mentum, turbulent kinetic energy, and turbulent kinetic energy dissipation rate are
used to determine the behavior of the fluid flow. All conservation equations have
the same general form, that for an arbitrary spatial region of volume V bounded
by closed surface S can be written as

E
S

(rvF 2 lF=F) · ds 5 E
V

QF dV, (1)

where r is the fluid density, v is the velocity vector, F stands for any conserved
quantity, lF is the associated diffusion coefficient, ds is the outward-pointing surface-
element vector, and QF is the volumetric source of F.

Meshes made of polyhedral cells bounded by cell faces sj (see Fig. 1), and in
general of different topology, combined in an arbitrary way, are allowed for the
space discretization in the present study. The computational points are located in
the centers of the CVs (‘‘the cell-centered’’ arrangement), and all variables share
the same CV (‘‘the colocated’’ or ‘‘nonstaggered’’ arrangement).

The assumption of linear spatial variations of the dependent variables and the
midpoint rule approximation of the surface and volume integrals in Eq. (1) are
used for equation discretization, leading to a second-order scheme. The unknown
coefficients of a linear profile may be determined by using the values of dependent
variables of the nearest neighbors of cell P0 only, since for the most simple cell
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topology (tetrahedral), the number of nearest neighbors (four) is sufficient to deter-
mine four unknown coefficients. The fact that only nearest neighbors are used
results in a compact computational molecule. The assumption about linear variation
of F within the CV can be written as

f(x) 5 fP0
1 (=f)P0

· (x 2 xP0
), (2)

where xP0
is the position vector of point P0 and (=f)P0

is an approximation of the
gradient of f at point P0 . The lowercase f in Eq. (2) is introduced to indicate that
f is an approximation of F and that in a general case these two are different. The
unknown three components of (=f)P0

are to be determined by demanding that the
profile (2) fits the values of f at chosen locations. An attempt to fit the values of
f at all nearest neighbors results in an overdetermined algebraic system. In the
present work a least-squares fit of Eq. (2) to the set of the nearest neighbor values
is proposed to calculate (=f)P0

. The result can be written in matrix form as

(=f)P0
5 G21h. (3)

The components hk of the vector h and the coefficients gkl of the 3 3 3 matrix
G are defined by

hk 5 On
j51

(fPj
2 fP0

)dk
j ,

(4)

gkl 5 On
j51

dk
j dl

j ,

where n is the number of neighbor cells that share cell faces with cell P0 , and dk
j

is the kth Cartesian component of the vector dj (Fig. 1). It is noteworthy that the
matrix G is symmetric, that its coefficients depend on the cell geometry only, and
that it is therefore the same for all dependent variables. If there is no mesh motion,
it is enough to calculate G21 once and to store its six independent coefficients for
each CV.

The value of dependent variable at the cell face fj that features in the convective
flux Cj is estimated using the expression

fj 5HfP0
1 [c=fj · (xj 2 xP0

)] if Fj $ 0,

fPj
1 [c=fj · (xj 2 xPj

)] if Fj , 0,
(5)

where c is a blending factor; =fj is the gradient at the cell face obtained by
interpolating gradients (3) of cell P0 and Pj; xj is the position vector of the center
of the cell face j; and Fj is the mass flux through the cell face j. In the c 5 1 limit
the scheme is second-order centered (CD) and it reduces to the first-order upwind
(UD) scheme for c 5 0. A predetermined blend of the CD and the UD schemes
(i.e., 0 # c # 1) is used in the present study, in the deferred-correction manner
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[19]. In this, the UD values are treated implicitly and the differences between first-
and second-order approximations (expression in [ ] in (5)) taken at the previous
outer iteration level are used explicitly.

The diffusion flux Dj through the cell face j is a function of the gradient of
variable F at the face. The gradient of the transported variable obtained by (3) is
second-order space centered and as such cannot sense oscillations in the solution
with period equal to twice that of the characteristic mesh size h. This can be
corrected by the explicit addition of recoupling terms [20, 21] achieved in the present
study by adding a certain amount of the third-order numerical smoothing, i.e.,

=f*j 5 =fj 1 SfPj
2 fP0

udju
2 =fj ·

dj

udju
D dj

udju
. (6)

Assembling the contributions from convective and diffusive fluxes through all
cell faces and integrating the source term over all N control volumes in the computa-
tional domain results in a system of N algebraic equations of the form

a0fP0
2 On

j51
ajfPj

5 bf , (7)

for each conserved property F. The coefficients aj and source term bf are defined as

aj 5
lfj

udju2
(dj · sj) 2 min(Fj , 0), (8)

a0 5 On
j51

aj 2 aQf
VP0

, (9)

bf 5 On
j51

lfj F=fj 2 S=fj ·
dj

udju
D dj

udju
G · sj

2 On
j51

c=fj · [(xj 2 xP0
) max(Fj , 0) 1 (xj 2 xPj

) max(2Fj , 0)] 1 bQf
VP0

, (10)

where aQf
and bQf

are the coefficients of the linearized source term QF [17].
The pressure does not feature explicitly in the continuity equation, which conse-

quently cannot be considered as ‘‘an equation for pressure’’ and the continuity
equation comes just as an additional constraint on the velocity field. This constraint
can be satisfied only by adjusting the pressure field. However, pressure is not a
conserved property and has no governing transport equation, so it is not immediately
clear how this adjustment of pressure is to be performed. This problem is especially
pronounced in case of incompressible flows. At the same time, the pressure source
term in the momentum equation is calculated using the second-order space-centered
scheme. As mentioned earlier, such a scheme can produce correct pressure-gradient
field, although the underlying pressure field possessed an unphysical oscillatory
profile [17]. The simple and yet efficient way of getting around both of these
aforementioned problems follows the idea used by Rhie and Chow [21]. The calcula-
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tion of the cell face mass flux is arranged to depend not only on the velocity field
but also on the pressure field. This influence of the pressure field is expressed in
the form of a third-order pressure coupling term, such that mass flux through the
cell face j becomes

Fj 5 rj Hvj 1 Kj F1
2

(=pP0
1 =pPj

) ·
dj

udju
2

pPj
2 pP0

udju
G sj

usju
J · sj , (11)

where vj is the velocity vector at the cell face, estimated using the CD scheme, p
pressure and Kj is defined as

Kj 5
1
2 FSV

av
0
D

P0

1 SV
av

0
D

Pj

G, (12)

where av
0 is the central coefficient (9) of the momentum equation. The pressure

coupling term introduces the pressure into the continuity equation in a rather
elegant way, such that it can be regarded as an equation for pressure and the
SIMPLE algorithm [17] can be used in its standard form. The mass imbalance

Qm 5 On
j51

Fj (13)

is to be annihilated by the mass-flux corrections F9j , which are related to the pressure
corrections p9,

Qm 5 On
j51

F9j 5 On
j51

ap
j (p9Pj

2 p9P0
), (14)

where coefficients ap
j follow from Eq. (11) and are given by

ap
j 5 2rjKj

usju
udju

. (15)

This formulation of the pressure-correction equation can be used for incompressible
and compressible low Mach number flows (Ma , 0.3).

The coupled system of nonlinear algebraic equations which results from the
discretization presented above, is linearized using an iterative procedure based on
the SIMPLE algorithm. The linearized system of algebraic equations is sparse, and
as can be seen from Eq. (8), each nearest neighbor contributes a coefficient to the
coefficient matrix. Since the number of cell nearest neighbors is arbitrary, the
resulting matrices do not have any specific structure, or in other words the number
of nonzero coefficients and their positions in each matrix row are arbritrary. The
iterative solvers of systems of linear algebraic equations which utilize any specific
matrix structure cannot be used in this case. Fortunately, very efficient conjugate
gradient-based solvers [22, 23] do not need any particular matrix configuration
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in order to be applied and because of this are used in a combination with the
discretization presented.

An illustration of the ability of the present method to handle meshes of arbitrary
topology is shown in Fig. 6. The application is to lid-driven laminar cavity flow [25],
here computed with various shapes of cells, with numbers of faces ranging from 3
to 10. Further results for this case using adaptive refinement will be shown later.

3. ADAPTIVE TECHNIQUE

The assumed profiles do not in general represent the true spatial (and in transient
problems temporal) variations of the dependent variable F. Consequently the alge-
braic system based on these assumptions is satisfied by a solution vector f that has a
discretization error e, defined as the difference between the exact fields of dependent
variables and the discrete solution field (e 5 F 2 f). The numerical accuracy can
be improved by reducing the error in the profile assumptions. There are essentially
two means by which this can be achieved. One is to alter the spacing of the
computational points, either by changing the number (h-method) or by altering
their distribution (r-method). The other alternative is to improve the accuracy of the
discretization scheme. For a required solution accuracy it can be more economical to
solve a higher-order discretization scheme on a coarse grid than a lower-order one
on a finer grid, provided the solution is ‘‘sufficiently smooth.’’ However, the higher-
order formulae are not likely to be significantly more accurate than lower-order
ones if the exact solution contains discontinuities or if the numerical grid is too
coarse. An indisputable way for improving the numerical accuracy is grid refinement,
in which the distance over which the profile assumptions apply is made smaller,
and the details of the assumptions become less important.

The problem with mesh movement (r-method) is that for a given number of grid
points, there is no guarantee of obtaining a sufficiently accurate solution. In addition,
procedures for redistributing the grid points can produce distorted CVs. Thus, the
h-method is our preferred approach, for it can locally improve the accuracy of any
well-posed numerical scheme.

Before the grid is to be adaptively altered, information about the error distribution
must be available, such that discretization is improved only in regions where its
resolution is inadequate. This is the role of an error indicator, a proposal for which
will now be discussed.

3.1. Error Estimation

The convective and diffusive fluxes of momentum, energy, or any other conserved
property passing through the cell face are over- or underestimated in some regions
as a result of inaccurate assumptions about the spatial variation of the dependent
variables. These over- or underestimations can be envisaged as fictitious additional
source terms that force the numerical solution to depart from the exact one. These
sources are proportional to the truncation error. If the variation of the dependent
variable is smooth for a given mesh resolution, it is plausible to assume that the
higher powers of mesh spacing h are small multiplicative coefficients in the trunca-
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FIG. 2. One-dimensional truncation error analysis for variable f.

tion error and that its leading term will be the dominant contributor to the magnitude
of the truncation error. Also we can assume that the equations are well posed in
the sense that a small change in a term will have only a small effect on the solution,
which implies that the solution error will be small if the truncation error is small.
While this seems a plausible assumption to make, the authors know of no formal
proof for the type of governing equations under consideration.

Some authors (e.g., [5]) have used the difference between upwind and central
difference expressions for the convection term to identify the regions in a flow
calculation with large numerical diffusion produced by first-order upwind differenc-
ing on a given grid. This technique is limited to convection-dominated problems
(i.e., the error resulting in modeling diffusion is not considered), and only when
convection is modeled by the first-order upwind differencing scheme. Here the idea
is extended such that an error estimation is available in case of the use of second-
order schemes for both diffusion and convection transport.

The values of variable f and its gradient at two neighboring locations are used
in analysis. Instead of looking at the distribution of f in space, the variation only
in direction j, which connects the neighboring points, is considered (Fig. 2). This
simplifies the analysis and reduces the computational cost considerably. Projecting
the gradient of f onto the direction dj , four independent constraints on the variation
of f along j are available and are given below, enabling calculation of the coefficients
of an assumed third-order polynomial variation of f along j, i.e.,

f(j) 5 c0 1 c1j 1 c2j
2 1 c3j

3. (16)

The coefficients ci are to be determined in such a way that (16) satisfies the condi-
tions

j 5 0: f 5 fP0
; j 5 udju: f 5 fPj

;

j 5 0: (=f)j 5 (=f)j
P0

; j 5 udju: (=f)j 5 (=f)j
Pj

;
(17)

where (=f)j
Pj

is the gradient in direction j, i.e.,

(=f)j
Pj

5 (=f)Pj
· dj . (18)
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The coefficients ci that satisfy conditions (17) are given by

c0 5 fP0
,

c1 5 (=f)j
P0

,

c2 5 3
fPj

2 fP0

udju2
2

(=f)j
Pj

1 2(=f)j
P0

udju
, (19)

c3 5 22
fPj

2 fP0

udju3
1

(=f)j
Pj

1 (=f)j
P0

udju2
.

Expression (16) can be used to estimate the values of dependent variable and
its gradient in direction dj at the cell face j,

f̃j 5 c0 1 c1jj 1 c2j 2
j 1 c3j

3
j ,

(20)

=f̃j ·
dj

udju
5 c1 1 2c2jj 1 3c3j

2
j ,

where jj is the coordinate that defines the intersection of the distance vector dj and
the cell face plane. Now it is possible to re-evaluate mass, convection, and diffusion
fluxes of a conserved property based on (20) as follows,

F̃j 5 rj ṽj ? sj , (21)

C̃j 5 F̃j f̃j , (22)

D̃j 5 2lfj S=f̃j ?
dj

udj u
D dj

udj u
? sj , (23)

where ṽj is the velocity at the cell face j obtained using (20). In general, these fluxes
are different from those obtained during the calculation, since the profile (16) is
different from the one used during the discretization described earlier. Summing
up the differences between these fluxes over the surfaces bounding the CV leads
to an approximation of the source of the truncation error (the so-called tau error
[24]) t̃ at P0 ,

t̃P0
5 On

j51
[(C̃j 2 Cj) 1 (D̃j 2 DN

j )], (24)

where the superscript N denotes the normal diffusive flux. The tau error can also
be regarded as a source which should be added to the discretized form of the
transport equation in order to get the exact solution. Its relationship with the
solution error e is given by

a0eP0
2 On

j51
aj ePj

5 tP0
, (25)
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where the coefficients a0 and aj are the same as those introduced by Eq. (7). Using
the approximation t̃P0

of the tau error, the system of Eqs. (25) may be solved to
produce an approximation of the solution error e field.

A judgment on which level of the truncation error may be safely neglected, in
order to achieve the desired accuracy, will depend on how the tau error is normal-
ized. In the present study, the normalization is

t*P0
5

t̃P0

a0fref
, (26)

where fref is some reference value of the conserved property f. In this way, according
to Eq. (25), the resulting normalized tau error is an approximation to the solution
error e, equivalent to performing one Jacobi iteration on this equation. In general
fref might be set to the value of dependent variable at the location where the tau
error is calculated, or it can be a typical value in the computational domain or a
subdomain. In the present study the normalization is based on a selected typical
values of the dependent variables in the considered computational domain.

3.2. Grid Alteration

As already noted, the discretization and the data structure presented allow the
use of arbitrary polyhedral CVs. The latter in principle can be subdivided in a host
of different ways to form smaller polyhedra, so the flexibility carries over to grid
refinement strategies. In this study we have chosen to work with meshes which are
initially regular hexahedral (with Cartesian as a special case) and then refined by
one or more levels of cell subdivision. This particular choice was dictated by the
available computer code and time, but as will be seen later it is adequate to demon-
strate the capabilities of the methodology.

After solving the discrete system on a given grid, the solution is examined and the
cells at which the normalized tau error estimate t* for any of conserved properties is
above some predetermined value T* are marked. The boundaries of regions marked
for refinement are extended by a safety margin d. The choice of this, together with
T*, determines the part of the domain to be covered by the refined grid components.
It is clear that d is related to the characteristic cell size h of the currently finest
grid; in the present study it is taken to be 4h. Each CV marked for grid refinement
is subdivided into several smaller CVs in a prescribed manner. A typical hexahedral2

CV, whose refinement is performed by dividing it into eight (four in 2D) smaller
ones, is shown in Fig. 3. Cells next to the boundary are adjusted so that they follow
accurately the surface of the original geometry. The grid quality has to be checked
after this step since it might happen that after the adjustment very distorted cells
are created in regions where the surface geometry exhibits strong curvature and
penetrates into several layers of cells of the initial grid (see Fig. 4).

Once a hexahedral cell is locally refined, its nonrefined neighbors effectively have
an increased number of faces; i.e., they become ‘‘higher-order’’ polyhedra. This is

2 It would have been equally possible to use a triangular mesh subdivision: the choice is arbitrary.



777FINITE-VOLUME CFD PROCEDURE

FIG. 3. Simple strategy for refinement of a hexahedral control volume.

illustrated in Fig. 5a, which shows an apparently quadrilateral cell I adjacent to
three refined cells, and Fig. 5b, which shows a topologically equivalent polyhedral
cell J, here with seven faces. The difference between I and J is of course that in
physical space the former has pairs of coplanar faces. However, in the present
methodology fluxes through each of these individual faces are calculated in the
same conservative, coupled, implicit manner as fluxes through nonsubdivided faces.
The resulting coefficient matrix no longer has the regular banded structure of the
base hexahedral mesh, but this also presents no problems to a procedure already
geared for unbanded systems.

The above discussion should also make clear that the concept of ‘‘hanging nodes’’
has no place in the present methodology: every cell face is accorded identical
treatment, irrespective of the shape of the polyhedron.

The whole procedure of adaptive refinement of the currently finest mesh, and
solution of the corresponding discrete system of algebraic equations, is repeated
until the error estimates are below a desired value or the available computer memory

FIG. 4. Large surface curvature and cell aspect ratio.
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FIG. 5. Two cells of different shape, but identical topology, including neighbor connectivity.

limit is reached. In the early stages of the procedure, when the mesh might be very
coarse, the error estimate may not be very reliable. In this case error estimation
on finer grids may indicate that previous refinements were not necessary, in which
case they can be removed (mesh coarsening). However, the results presented here
were produced without mesh coarsening.

4. APPLICATION OF THE METHODOLOGY

In this section the present methodology is applied to four different test cases,
one involving laminar flow and the remainder turbulent. The main criteria for their
selection were: (a) appreciable degree of flow complexity and (b) availability of
benchmark data. Two of the cases involve simple rectilinear geometries for which
a Cartesian base mesh is the obvious choice. The other use a body-fitted regular
quadrilateral or hexahedral starting mesh.

The first test used to demonstrate the present adaptive refinement methodology
is the laminar lid-driven square cavity flow at Re 5 100 (Fig. 6). Grid-independent
results were initially produced on a uniform 256 3 256 grid using the CD scheme
for convection and they agree well with those reported in literature [9, 25]. We use
them as the ‘‘exact’’ solution, from which the exact error distribution is derived.

The locally refined grid driven by the present error estimation procedure is shown
in Fig. 7. The final grid has 712 CVs and was obtained by four levels of adaptive
local refinement, starting from a coarse 8 3 8 grid. All regions where the estimated
tau error was larger than 1% with respect to the velocity of the lid Ulid were refined.
The error was also monitored using Richardson extrapolation and by comparing
the solutions on a given grid with the ‘‘exact’’ one. The error estimate is less than
the exact error on all grids, but the effectivity index (ratio of exact and estimated
errors) does approach unity as the grid becomes finer, as shown in Fig. 8. The
error estimation based on Richardson extrapolation shows faster convergence of
effectivity index. However, locally refined grids based on both methods have similar
distributions of grid points in critical regions (Fig. 7).

The reduction in the number of CVs due to local refinement was 83% compared
to the 64 3 64 uniform grid which produced velocity profiles with the same error
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FIG. 6. Cavity-flow velocity field calculated on an unstructured mesh containing cells of different
topology.

levels. The velocity profiles obtained on the locally refined grid were in very good
agreement with the grid-independent solution, with maximum error of 1.2%.

The second example is the simulation of a turbulent flow through an orifice plate
with diameter ratio 0.5 at Re 5 18400. The turbulence is modeled using the standard

FIG. 7. Locally refined meshes based on Richardson extrapolation (left) and the present method
(right).
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FIG. 8. Averaged errors (left) and corresponding effectivity indices (right).

k-« model and wall functions. The geometry and boundary conditions were taken
from the experiment conducted by Nail [26]. The largest estimated errors for all
transported variables occurred, as would be expected, in the region around the
orifice, where large gradients of all variables exist. The estimated errors for the
axial velocity component were also large in recirculating regions near the wall.
Since wall functions are used to model the near-wall effects, the refinement in the
near-wall regions was controlled to ensure that values of y1 fall between the required
range of approximately 40 to 80. However, it should be noted that this implies that
irreducible discretization errors may remain at near-wall cells. The final locally
refined mesh is shown in Fig. 9. The patch of the finest mesh starts just upstream of
the orifice plate and extends about six diameters downstream, constantly shrinking
toward the axis of symmetry. As can be seen from Fig. 10, this refinement pattern
coincides with large spatial variations of the velocity near the axis of symmetry.
Figure 10 also shows very good agreement between the predicted and the measured
profiles, although in this case this result is also determined by the accuracy of the
turbulence model.

For the third case, flow over a surface mounted cube in a wind tunnel is considered.
The geometry and boundary conditions were taken from the experiment of Vasilic-
Meling [27]. The initial (318 CVs) and a locally refined grid (186452 CVs) are shown
in Fig. 11. The available computer memory did not allow sufficient refinement to
obtain fully grid-independent results, so it is difficult to judge quantitatively the
behavior of the error estimator. The maximum and volume-averaged velocity errors
on an intermediate locally refined 61397 CVs mesh were estimated to be 47.26%
(near the front and side edges of the obstacle) and 0.65%, respectively (volume
averaging was performed by multiplying the local error by the volume of the
associated cell, summing these products over the entire computational domain, and
dividing by the total volume of the computational domain). The next level of local
refinement, performed in regions where the estimated tau error was larger than
1% with respect to the values at the inlet, produced the mesh of Fig. 11 and
reduced the maximum and volume-averaged estimated errors to 35.7% and 0.60%,
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FIG. 9. Details of the error-adapted numerical mesh produced in calculations of the flow through
orifice plate.

respectively. Uniform refinement at the finest level would have needed around 1.4
million CVs.

Qualitatively the regions selected for refinement are in accordance with expecta-
tions (Fig. 11). The two corners between the walls next to inlet (region A in Fig.
11) are refined since boundary layers develop from the plug inlet velocity profile.
The largest spatial variations of all dependent variables are present around the
obstacle (region B), demanding higher numerical resolution there. Since the flow
is disturbed by the obstacle and redirected toward the side and top walls of the
tunnel, large variations are present near the corners and between the bottom surface

FIG. 10. Mean axial velocity along symmetry axes line as a function of grid resolution.
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FIG. 11. Initial and final numerical mesh for simulation of the flow around a cubical obstacle.

and the symmetry plane immediately downstream of the obstacle (regions C), as
the flow tends toward an undisturbed boundary layer.

Predicted velocity vector and pressure fields in symmetry plane of the channel
are shown in Fig. 12. Profiles of predicted local pressure coefficients Cp in the same
plane and on the surface of the obstacle are compared with the measured ones and
presented in Fig. 13. In general, the agreement between measured and predicted
profiles is good at the front surface of the obstacle. However, the agreement is
poor at the top surface close to the front edge, where the flow separates. The
predicted positive pressure gradient in this plane is much larger than the measured
one. The trend of this profile is not influenced by the changes of differencing scheme
or the numerical resolution, suggesting that differences may be attributed to defects
of the turbulence model [28].

The final example is to demonstrate the flexibility of the methodology and the
behavior of refinement criterion when applied to complex flows in industrial config-
urations. The three-dimensional turbulent swirling flow in a water model of a can-
type gas turbine combustor, which was the subject of an experimental investigation
conducted by Palma [29], is selected for this purpose. The initial mesh (336 CVs)
and the final locally refined one (248316 CVs) obtained adaptively refining this one
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FIG. 12. Velocity and pressure fields in symmetry plane (pressure contours between 2457 and 338.1
Pa with step 61.2).

are presented in Fig. 14. The normalization of the refinement measure was based
on the values of the dependent variables at the primary holes. Refinement was not
performed in the downstream nozzle section of the combustor, since this area was
not of interest. Figure 14 gives a qualitative overview of the predicted complex
flow field, showing the swirling motion at the inlet, the reverse flow and recirculation
zone upstream of the first row of primary jets, the manner in which the axial main
flow bypasses the injected jets close to the injection ports, and the intense penetra-
tion of the primary jets toward the center line.

A characteristic observed to respond sensitively to both turbulence modeling and
numerical resolution is the axial centerline velocity variation, as noted in [30].
Figure 15 depicts four profiles obtained with different grid densities, compared with
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FIG. 13. Distribution of the pressure coefficient around obstacle in the symmetry plane x 5 0.

the experimental data of Palma [29]. The uniform grids were third and fourth
uniform refinements of the initial grid, being composed of 19599 and 153633 CVs,
respectively. The locally refined meshes were the result of four and five levels of
adaptive refinement. The first locally refined mesh has 88045 CVs, and its finest
cells correspond to a mesh resolution of a uniform grid with 153633 CVs. The
velocity profiles obtained on these two grids are similar (see Fig. 15). The next
level of local grid refinement produced a grid composed of 248316 CVs. The velocity
profile obtained on this grid exhibits more strongly an anomalous trough upstream
of the primary holes. Lin and Leschziner [30] have linked this to the large axial
pressure gradients accompanying a corresponding large axial variation in the swirl
velocity in the vicinity of the centerline. They performed calculations for a similar
combustor using the standard k-« eddy-viscosity model and two variants of the
Reynolds stress transport (RSTM) model of turbulence. They argued that the k-«
model, being more diffuse, tended to erode the vortex and yielded better agreement
with the experimental data than the RSTM models. However, in the present study
the increase of the mesh resolution reveals that the k-« model has poor behavior
in this region similar to that of the RSTM.

Since it again was not possible to produce grid-independent results due to com-
puter memory limits (the maximum estimated error on the finest grid was about
65% and the average 9% and their reduction below 1% would need meshes of well
over 2 3 106 CVs), it is difficult for this flow to quantitatively judge the results of
local grid refinement. However, it can be said that the refinement took place in all
regions where one would expect the presence of large discretization errors. More
nodes were concentrated in the regions around swirler and primary and dilution
jets where the strong shearing flows existed. The relatively uniform cores of the
jets were not refined so much, while refinement took place in the mixing layers of
the jets where strong velocity variation was present. Refinement also took place in
near-wall regions.
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FIG. 15. Axial velocity along the combustor centerline.

The memory and computer times necessary for each of the test cases are summa-
rized in Table I. The table also presents computer times which are obtained by
embedding the numerical method described into a full-multigrid algorithm, which
will be described in a separate publication.

5. CONCLUSIONS

In this paper we have presented a novel FV discretization practice that does not
rely on any particular cell topology. Moreover, it is completely performed in real
space avoiding any coordinate transformations, and consequently it is easy to under-
stand, implement, and test. Locally refined grids can be created inexpensively, using
simple rules for refinement of existing cells. The polyhedral cells that are created
during this process, do not require exceptional treatment.

Local grid refinements controlled by a novel error estimation technique were in
accordance with expectations for all cases presented. In the case of the laminar lid-
driven cavity flow, the quantitative measures of performance (average estimated
error and effectivity index) were satisfactory. However, for the turbulent flow cases
full quantitative assessment was not possible due to restriction on grid refinement
caused by the use of wall functions and, in the three-dimensional cases, com-
puter resources.

TABLE I
Memory (MB), Number of Iterations, and CPU Times (Minutes) for Each Case on an

SGI R3000 Challenge Computer

Single grid Multigrid

Case No. CVs Memory Iter. CPU Iter. CPU

1 916 0.4 552 4.52 32 0.27
2 19308 7.6 960 346.45 152 83.28
3 186452 72.6 631 1798.80 99 396.75
4 248316 95.3 562 2296.46 128 672.08
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